[21-BS 532-6A]

AT THE END OF FIFTH SEMESTER (CBCS PATTERN)

MATHEMATICS - V-6(A) - NUMERICAL METHODS

(COMMON FOR B.A., B.Sc.)

UG PROGRAM (4 YEARS HONORS)

(w.e.f. Admitted Batch 2020-21)

Time: 3 Hours

Maximum: 75 marks

SECTION A —
$$(5 \times 5 = 25 \text{ marks})$$

Answer any FIVE questions.

1. Prove that
$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$

$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$
 అని చూపండి.

- 2. Given $y_{20}=24$, $y_{24}=32$, $y_{28}=35$, $y_{32}=40$, find y_{25} by Bessel's formula. $y_{20}=24$, $y_{24}=32$, $y_{28}=35$, $y_{32}=40$ అయితే బెస్సెల్ సూత్రాన్ని ఉపయోగించి y_{25} కినుక్ ్బండి.
- 3. Find $\frac{dy}{dx}$ at x = 5 from the following table:

ALL THE MANAGEMENT OF THE PARTY						
x	2	5 4 5	9	10		
у	4	56	711	980		

పై పట్టికను ఉపయోగించి, x=5 వద్ద $\frac{dy}{dx}$ ను కనుక్కోండి.

4. Evaluate $\int_{-3}^{3} x^4 dx$ by using Simpson's 1/3 rule.

సింప్సన్ 1/3 స్కూతాన్ని ఉపయోగించి $\int_{-3}^3 \, x^4 \, dx$ ను గణించండి.

5. Solve $\frac{dy}{dx} = x - y$, y(0) = 1 by Picard's method, upto four approximations.

సమీకరణం $\frac{dy}{dx}=x-y\,,\;\;y(0)=1\,$ అయినప్పుడు పికార్డ్స్ పద్ధతిని ఉపయోగించి నాల్గవ ఉజ్జాయింపు సాధనను కనుక్కోండి.

- 6. Show that
 - (a) $(1+\Delta)(1-\nabla) =$
 - (b) $\nabla \Delta = \Delta \nabla$ అని చూపండి.
- 7. Using Lagrange's interpolation formula, find the value of y at x = 4

055 V 050	0	85 1 05	2	5
f(x)	2	5 S	7	8

పై పట్టికను ఉపయోగించి లెగ్గాంజి అంతర్వేశన స్మాతాన్ని $x=4\,$ వద్ద $y\,$ ను గణించండి

8. Using Taylor's series method, solve the differential equation $\frac{dy}{dx} = x^2 + y^2$ for x = 0.4 given that y = 0 when x = 0.

 $y=0\,,\quad x=0$ అయినప్పుడు టేలర్ ణేణి పద్ధతిని ఉపయోగించి, ప్రారంభ మూల్య సమస్య $\dfrac{dy}{dx}=x^2+y^2$ సాధనను x=0.4 పద్ద కనుక్కోండి.

SECTION B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer ALL questions.

9. (a) State and prove Newton-Gregory formula for forward interpolation with equal intervals.

న్యూటన్–గైగోరీ పురోగమన అంతర్వేశన స్కూతాన్ని స్థవచించి, నిరూపించండి

Or

(b) · Using Newton's formula for interpolations, estimate the population for the year 1905.

Year (x) Хон (x)	1891	1901	1911	1921	1931
Population (in thousands) සතභා (ට්වේ්)	98	132	168	195	246

పై పట్టికలోని న్యూటన్ స్మూతాన్ని ఉపయోగించి 1905 సంవత్సరపు జనాభాను అంతర్వేశన అంచనా పేయండి.

10. (a) Use Stirling formula to find y_{35} , given that $y_{20} = 512$, $y_{30} = 439$, $y_{40} = 346$ and $y_{50} = 243$.

 $y_{20}=512\ ,\ y_{30}=439\ ,\ y_{40}=346\$ మరియు $y_{50}=243\$ అయినప్పుడు స్టిర్లింగ్ సూత్రాన్ని ఉపయోగించి y_{35} విలువను కనుక్కోండి.

Or

Newton's divided difference formula, find the the following table:

13	x	4	5	7	10	11	13
0	f(x)	48	100	294	900	1210	2028

పై పట్టిక నుండి న్యూటన్ విభాజిత భేద అంతర్వేశన సూత్రాన్ని ఉపయోగించి f(8) మరియు

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.5 using the given table.

j., x .5	1.5	2.0	2.5	3.0	3.5	4.0
995 y 955	3.375	7.000	13.625	24.000	38.875	59.000

పై పట్టికను ఉపయోగించి x =1.5 పద్ద $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ లను కనుకోర్రండి.

find this value of y.

x	0.60	0.65	0.70	0.75
y	0.6221	0.6155	0.6138	0.6170

ైపై పట్టిక నుంచి x ను y కనిష్ఠమయ్యేట్లుగా నిర్ణయించి y యొక్క ఈ విలువను కనుక్కోండి

Evaluate the integral $I = \int_{4}^{0.2} \log x \, dx$, using Weddle's Rule

పెడల్స్ నియమాన్ని ఉపయోగించి $I=\int_4^{\pi/2}\log x\ dx$ ను గణించండి.

Evaluate $\int_0^{\infty} \sin x \, dx$ using Euler-Maclaurin's formula.

ఆయిలర్–మెక్టారిన్ స్మూతాన్ని ఉపయోగించి $\int_0^{\pi/2} \sin x \ dx$ ను గణించండి.

Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ ఇచ్చిన ప్రారంభ మూల్య సమస్య $\dfrac{dy}{dx}=\dfrac{y-x}{y+x},\;\;y(0)=1$ ను ఆయిలర్ పద్ధతిని ఉపయోగించి

Given $\frac{dy}{dx}$ = y - x with y(0) = 2, find y(0.1) using Runge-Kutta method. $\frac{dy}{dx} = y - x,$ కనుక్కోండి

JANUARY-2024 SEMESTER-V, FINAL EXAMINATION PAPER.